Monday, May 29, 2006

Howstuffworks "How Fuel Cells Work"

You may have heard a lot recently about fuel cells. According to many news reports, we may soon be using the new energy-saving technology to generate electrical power for our homes and cars. The technology is extremely interesting to people in all walks of life because it offers a means of making power more efficiently and with less pollution. But how does it do this?
In this article, we'll take a quick look at each of the existing or emerging fuel-cell technologies. We'll detail how one of the most promising technologies works, and we'll discuss the potential applications of fuel cells.
Gas prices driving you hybrid?Are you considering a hybrid as your next vehicle?Tell us why or why not.
If you want to be technical about it, a fuel cell is an electrochemical energy conversion device. A fuel cell converts the chemicals hydrogen and oxygen into water, and in the process it produces electricity.
The other electrochemical device that we are all familiar with is the battery. A battery has all of its chemicals stored inside, and it converts those chemicals into electricity too. This means that a battery eventually "goes dead" and you either throw it away or recharge it.
With a fuel cell, chemicals constantly flow into the cell so it never goes dead -- as long as there is a flow of chemicals into the cell, the electricity flows out of the cell. Most fuel cells in use today use hydrogen and oxygen as the chemicals.
Photo courtesy Ballard Power SystemsA fuel-cell stack that could power an automobileThe fuel cell will compete with many other types of energy conversion devices, including the gas turbine in your city's power plant, the gasoline engine in your car and the battery in your laptop. Combustion engines like the turbine and the gasoline engine burn fuels and use the pressure created by the expansion of the gases to do mechanical work. Batteries converted chemical energy back into electrical energy when needed. Fuel cells should do both tasks more efficiently.
A fuel cell provides a DC (direct current) voltage that can be used to power motors, lights or any number of electrical appliances.
There are several different types of fuel cells, each using a different chemistry. Fuel cells are usually classified by the type of electrolyte they use. Some types of fuel cells work well for use in stationary power generation plants. Others may be useful for small portable applications or for powering cars.
The proton exchange membrane fuel cell (PEMFC) is one of the most promising technologies. This is the type of fuel cell that will end up powering cars, buses and maybe even your house. The PEMFC uses one of the simplest reactions of any fuel cell. First, let's take a look at what's in a PEM fuel cell:
Figure 1. The parts of a PEM fuel cell
In Figure 1 you can see there are four basic elements of a PEMFC:
The anode, the negative post of the fuel cell, has several jobs. It conducts the electrons that are freed from the hydrogen molecules so that they can be used in an external circuit. It has channels etched into it that disperse the hydrogen gas equally over the surface of the catalyst.
The cathode, the positive post of the fuel cell, has channels etched into it that distribute the oxygen to the surface of the catalyst. It also conducts the electrons back from the external circuit to the catalyst, where they can recombine with the hydrogen ions and oxygen to form water.
The electrolyte is the proton exchange membrane. This specially treated material, which looks something like ordinary kitchen plastic wrap, only conducts positively charged ions. The membrane blocks electrons.
The catalyst is a special material that facilitates the reaction of oxygen and hydrogen. It is usually made of platinum powder very thinly coated onto carbon paper or cloth. The catalyst is rough and porous so that the maximum surface area of the platinum can be exposed to the hydrogen or oxygen. The platinum-coated side of the catalyst faces the PEM.
Figure 2. Animation of a fuel cell working
Chemistry of a Fuel Cell
Anode side:2H2 => 4H+ + 4e-
Cathode side:O2 + 4H+ + 4e- => 2H2O
Net reaction:2H2 + O2 => 2H2O Figure 2 shows the pressurized hydrogen gas (H2) entering the fuel cell on the anode side. This gas is forced through the catalyst by the pressure. When an H2 molecule comes in contact with the platinum on the catalyst, it splits into two H+ ions and two electrons (e-). The electrons are conducted through the anode, where they make their way through the external circuit (doing useful work such as turning a motor) and return to the cathode side of the fuel cell.
Meanwhile, on the cathode side of the fuel cell, oxygen gas (O2) is being forced through the catalyst, where it forms two oxygen atoms. Each of these atoms has a strong negative charge. This negative charge attracts the two H+ ions through the membrane, where they combine with an oxygen atom and two of the electrons from the external circuit to form a water molecule (H2O).
This reaction in a single fuel cell produces only about 0.7 volts. To get this voltage up to a reasonable level, many separate fuel cells must be combined to form a fuel-cell stack.
PEMFCs operate at a fairly low temperature (about 176 degrees Fahrenheit, 80 degrees Celsius), which means they warm up quickly and don't require expensive containment structures. Constant improvements in the engineering and materials used in these cells have increased the power density to a level where a device about the size of a small piece of luggage can power a car.
Problems with Fuel Cells
Consumer Guide Car Reviews
Get ratings, reviews, prices, highlights, news and more!
What's the best midsize car?
What's the best sporty high-performance car ?
What's the best compact SUV?
What's the best midsize SUV?
What's the best large pickup truck? We learned in the last section that a fuel cell uses oxygen and hydrogen to produce electricity. The oxygen required for a fuel cell comes from the air. In fact, in the PEM fuel cell, ordinary air is pumped into the cathode. The hydrogen is not so readily available, however. Hydrogen has some limitations that make it impractical for use in most applications. For instance, you don't have a hydrogen pipeline coming to your house, and you can't pull up to a hydrogen pump at your local gas station.
Hydrogen is difficult to store and distribute, so it would be much more convenient if fuel cells could use fuels that are more readily available. This problem is addressed by a device called a reformer. A reformer turns hydrocarbon or alcohol fuels into hydrogen, which is then fed to the fuel cell. Unfortunately, reformers are not perfect. They generate heat and produce other gases besides hydrogen. They use various devices to try to clean up the hydrogen, but even so, the hydrogen that comes out of them is not pure, and this lowers the efficiency of the fuel cell.
Some of the more promising fuels are natural gas, propane and methanol. Many people have natural-gas lines or propane tanks at their house already, so these fuels are the most likely to be used for home fuel cells. Methanol is a liquid fuel that has similar properties to gasoline. It is just as easy to transport and distribute, so methanol may be a likely candidate to power fuel-cell cars.
Fuel Cell GoalsPollution reduction is one of the primary goals of the fuel cell. By comparing a fuel-cell-powered car to a gasoline-engine-powered car and a battery-powered car, you can see how fuel cells might improve the efficiency of cars today.
Since all three types of cars have many of the same components (tires, transmissions, etc.), we'll ignore that part of the car and compare efficiencies up to the point where mechanical power is generated. Let's start with the fuel-cell car. (All of these efficiencies are approximations, but they should be close enough to make a rough comparison.)
If the fuel cell is powered with pure hydrogen, it has the potential to be up to 80-percent efficient. That is, it converts 80 percent of the energy content of the hydrogen into electrical energy. But, as we learned in the previous section, hydrogen is difficult to store in a car. When we add a reformer to convert methanol to hydrogen, the overall efficiency drops to about 30 to 40 percent.
We still need to convert the electrical energy into mechanical work. This is accomplished by the electric motor and inverter. A reasonable number for the efficiency of the motor/inverter is about 80 percent. So we have 30- to 40-percent efficiency at converting methanol to electricity, and 80-percent efficiency converting electricity to mechanical power. That gives an overall efficiency of about 24 to 32 percent.

No comments: